Part Number Hot Search : 
12000 ST75951 TDA726 RFP7N35 00250 U1000 KA3525 A108SYZQ
Product Description
Full Text Search
 

To Download BCW73LT1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LESHAN RADIO COMPANY, LTD.
General Purpose Transistors
NPN Silicon
3 COLLECTOR
BCW72LT1
3
1 BASE
MAXIMUM RATINGS
Rating Collector-Emitter Voltage Collector-Base Voltage Emitter-Base Voltage Collector Current -- Continuous Symbol V CEO V CBO V EBO IC Value 45 50 5.0 100
2 EMITTER
1 2
Unit Vdc Vdc Vdc mAdc
CASE 318-08, STYLE 6 SOT-23 (TO-236AB)
THERMAL CHARACTERISTICS
Characteristic Total Device Dissipation FR- 5 Board, (1) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol PD Max 225 1.8 RJA PD 556 300 2.4 RJA TJ , Tstg 417 -55 to +150 Unit mW mW/C C/W mW mW/C C/W C
DEVICE MARKING
BCW72LT1 = K2
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (IC = 2.0mAdc, VEB = 0 ) Collector-Emitter Breakdown Voltage (IC = 2.0 mAdc, VEB = 0 ) Collector-Base Breakdown Voltage (IC = 10 Adc, IE= 0 ) Emitter-Base Breakdown Voltage (I E= 10 Adc, I C= 0) Collector Cutoff Current (V CB= 20 Vdc, I E= 0) (V CB= 20 Vdc, I E= 0, T A=100C ) 1. FR- 5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. V
(BR)EBO
V (BR)CEO
45
--
--
Vdc
V (BR)CES
45
--
--
Vdc
V (BR)CBO
50
--
--
Vdc
5.0
--
--
Vdc
I CBO -- -- -- -- 100 10 nAdc Adc
M14-1/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued)
Characteristic Symbol Min Typ Max Unit
ON CHARACTERISTICS
DC Current Gain ( I C= 2.0 mAdc, VCE = 5.0 Vdc ) Collector-Emitter Saturation Voltage ( I C = 10 mAdc, IB = 0.5 mAdc ) ( I C = 50 mAdc, IB = 2.5 mAdc ) Base-Saturation Voltage ( I C = 50 mAdc, I B = 2.5 mAdc ) Base-Emitter On Voltage (I C = 2.0 mAdc, V CE = 5.0 Vdc) hFE V CE(sat) -- -- V BE(on) V BE(on) -- 0.6 -- 0.21 0.85 -- 0.25 -- -- 0.75 Vdc Vdc 200 -- 450 -- Vdc
SMALL-SIGNAL CHARACTERISTICS
Current-Gain -- Bandwidth Product (I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz) Output Capacitance ( VCB = 10 Vdc,I E= 0, f = 1.0 MHz) Input Capacitance (I E = 0, V CB = 10 Vdc, f = 1.0 MHz) Noise Figure ( I C = 0.2 mAdc, V CE = 5.0 Vdc, R S = 2.0 k, f = 1.0 kHz, BW = 200 Hz ) fT C obo C ibo NF -- -- -- -- 300 -- 9.0 -- -- 4.0 -- 10 MHz pF pF dB
EQUIVALENT SWITCHING TIME TEST CIRCUITS
+3.0 V
t
1
+3.0 V
300 ns DUTY CYCLE = 2% - 0.5 V <1.0 ns +10.9 V
10 < t 1 < 500 s
275 10 k
DUTY CYCLE = 2% 0 - 9.1 V
+10.9 V
275 10 k
C S < 4.0 pF*
1N916
<1.0 ns
C S < 4.0 pF*
*Total shunt capacitance of test jig and connectors
Figure 1. Turn-On Time
Figure 2. Turn-Off Time
M14-2/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1
TYPICAL NOISE CHARACTERISTICS
(V CE = 5.0 Vdc, T A = 25C)
20 100
IC=1.0 mA
e n , NOISE VOLTAGE (nV)
BANDWIDTH = 1.0 Hz RS~ 0 ~
50 20
IC=1.0mA 300A
BANDWIDTH = 1.0 Hz R~ ~
S
300A
10
I n , NOISE CURRENT (pA)
10 5.0 2.0 1.0 0.5 0.2 0.1 10 20 50 100 200 500
100A
7.0 5.0
100A
3.0
10A
30A
30A 10A
1.0k 2.0k 5.0k 10 k
2.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 3. Noise Voltage
Figure 4. Noise Current
NOISE FIGURE CONTOURS
(V CE = 5.0 Vdc, T A = 25C)
500k 200k BANDWIDTH = 1.0 Hz 1.0M 500k BANDWIDTH = 1.0 Hz
100k 50k 20k 10k 5.0k 2.0k 1.0k 500 200 100 50 10 20 30 50 70 100 200 300 500 700 1.0K
R S , SOURCE RESISTANCE ( )
R S , SOURCE RESISTANCE ( )
200k 100k 50k 20k 10k 5.0k 2.0k 1.0k 500 200 100 10 20 30 50 70 100 200 300 500 700 1.0K
2.0 dB 3.0 dB 4.0dB 6.0 dB 10 dB
1.0 dB 2.0 dB 3.0 dB 5.0 dB 8.0 dB
I C , COLLECTOR CURRENT (A)
I C , COLLECTOR CURRENT (A)
Figure 5. Narrow Band, 100 Hz
500k
Figure 6. Narrow Band, 1.0 kHz
R S , SOURCE RESISTANCE ( )
200k 100k 50k 20k 10k 5.0k 2.0k 1.0k 500 200 100 50 10 20 30 50 70 100 200
10 Hz to 15.7KHz
Noise Figure is Defined as:
NF = 20 log 10
1.0 dB 2.0 dB 3.0 dB 5.0 dB 8.0 dB
300 500 700 1.0K
( ---------------) 4KTR
S
e n 2 +4KTRS +I n2 R S2
1/ 2
e n = Noise Voltage of the Transistor referred to the input. (Figure 3) I n = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman's Constant (1.38 x 10 -23 j/ K) T = Temperature of the Source Resistance ( K) R s = Source Resistance ( )
I C , COLLECTOR CURRENT (A)
Figure 7. Wideband
8
M14-3/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1
TYPICAL STATIC CHARACTERISTICS
400
T J = 125C
hFE , DC CURRENT GAIN
200
25C
100 80 60
- 55C
V CE= 1.0 V V CE= 10 V
0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
40 0.0040.006 0.01
I C , COLLECTOR CURRENT (mA)
Figure 8. DC Current Gain
V CE , COLLECTOR- EMITTER VOLTAGE (VOLTS)
I C , COLLECTOR CURRENT (mA)
1.0
100
T J = 25C
0.8
80
T A = 25C PULSE WIDTH =300 s DUTY CYCLE<2.0%
I B= 500 A 400 A 300 A
0.6
I C= 1.0 mA
10 mA
50 mA
100 mA
60
200 A
40
0.4
100 A
20
0.2
0 0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
0 0 5.0 10 15 20 25 30 35 40
I B , BASE CURRENT (mA)
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 9. Collector Saturation Region
1.4
Figure 10. Collector Characteristics
V , TEMPERATURE COEFFICIENTS (mV/C)
1.6
T J = 25C
1.2
*APPLIES for I C / I B< h FE / 2
0.8
V, VOLTAGE (VOLTS)
1.0 0.8 0.6 0.4 0.2 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
0
VC for V CE(sat)
25C to 125C -55C to 25C
V BE(sat) @ I C /I B = 10 V BE(on)@ V CE= 1.0 V
-0.8
25C to 125C
-1.6
V CE(sat) @ I C /I B = 10
VB for V BE
-55C to 25C
-2.4 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 11. "On" Voltages
Figure 12. Temperature Coefficients
M14-4/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1
TYPICAL DYNAMIC CHARACTERISTICS
300 200 100 70
V CC= 3.0 V IC /I B= 10 T J= 25C
1000 700 500 300 200
ts
t, TIME (ns)
30 20 10 7.0 5.0 3.0 1.0 2.0 3.0 5.0 7.0 10
tf td @V BE(off)= 0.5 Vdc
t, TIME (ns)
50
100 70 50 30 20 10
tf VCC= 3.0 V IC /I B= 10 IB1=IB2 T J= 25C
1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
20
30
50
70
100
I C , COLLECTOR CURRENT (mA)
f T, CURRENT- GAIN BANDWIDTH PRODUCT (MHz)
I C , COLLECTOR CURRENT (mA)
Figure 13. Turn-On Time
500 10.0
Figure 14. Turn-Off Time
300
T J = 25C f=100MHz V CE=20 V
C, CAPACITANCE (pF)
7.0 5.0
T J= 25C f =1.0MHz C ib C ob
200
5.0 V
3.0
100
2.0
70
50 0.5
1.0 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 15. Current-Gain -- Bandwidth Product
hoe , OUTPUT ADMITTANCE ( mhos )
20 200 100 70 50
Figure 16. Capacitance
h ie , INPUT IMPEDANCE ( k )
10 7.0 5.0 3.0 2.0
h fe ~ 200 @ I C= 1.0 mA ~
VCE= 10 Vdc f = 1.0 kHz T A = 25C
VCE= 10 Vdc f = 1.0 kHz T A= 25C h fe ~ 200 @ I C= 1.0 mA ~
30 20
1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
10 7.0 5.0 3.0 2.0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 17. Input Impedance
Figure 18. Output Admittance
M14-5/6
LESHAN RADIO COMPANY, LTD.
BCW72LT1
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
1.0 0.7 0.5 0.3 0.2
D = 0.5
0.2 0.1 FIGURE 19A 0.05 P(pk) 0.02 0.01 t SINGLE PULSE
1
0.1 0.07 0.05 0.03 0.02 0.01 0.01
DUTY CYCLE, D = t 1 / t 2 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t 1 (SEE AN-569)
t
2
Z JA(t) = r(t) * RJA T J(pk) - T A = P (pk) Z JA(t)
1.0k 2.0k 5.0k 10k 20k 50k 100k
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
500
t, TIME (ms)
Figure 19. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
V CC = 30 Vdc
103
102
I CEO
101
100
I
CBO
AND I CEX @ V BE(off) = 3.0 Vdc
10-1
10-2 -4 -2 0 +20 +40 +60 +80 +100 +120 +140 +160
T J , JUNCTION TEMPERATURE (C)
Figure 19A.
400
A train of periodical power pulses can be represented by the model as shown in Figure 19A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles. To find Z JA(t) , multiply the value obtained from Figure 19 by the steady state value R JA . Example: The MPS3904 is dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore T = r(t) x P (pk) x R JA = 0.22 x 2.0 x 200 = 88C. For more information, see AN-569.
I C , COLLECTOR CURRENT (nA)
I C , COLLECTOR CURRENT (mA)
1.0 ms
200
100s 10s 1.0 s dc
100 60 40
T C = 25C T A = 25C dc T J = 150C
CURRENT LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT
2.0 4.0 6.0 8.0 10
20
10 6.0 4.0
The safe operating area curves indicate I C -V CE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 20 is based upon T J(pk) = 150C; T C or T A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided T J(pk) <150C. T J(pk) may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
40
20
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 20.
M14-6/6


▲Up To Search▲   

 
Price & Availability of BCW73LT1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X